The Fabrication and Dielectric Constant of (1-3) Piezoceramic Polymer Composites

Jerapong Tontrakoon^a, Gobwute Rujijanagul^{a,b}, Kamonpan Pengpat^{a,b}, Sukum Eitssayeam^{a,b}, Uraiwan Intatha^c, Kachaporn Sanjoom^a and Tawee Tunkasiri^{a,b,d,*}

^aDepartment of Physics and Materials Science, Faculty of Science, Chiang Mai

University, Chiang Mai, 50200, Thailand

^bMaterials Science Research Center, Faculty of Science, Chiang Mai University,

Chiang Mai, 50200, Thailand

^cSchool of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand

^dScience and Technology Research Institute Chiang Mai University,

Chiang Mai, 50200, Thailand

*tawee.tun@cmu.ac.th

Keywords: PZT-polymer, (1-3) composites, dielectric property.

Piezoceramic-polymer composites having (1-3) type connectivity and of a scale size suitable for high frequency >1 MHz transducers was carried out in this study. The piezoceramics (PbZr_{0.52}Ti_{0.48}O₃, PZT) were prepared by the conventional mixed oxide route. The starting powders of PbO, ZrO₂ and TiO₂ were mixed and calcined at 800°C. The calcined powder was mixed with excess PbO and a lithium/bismuth-based glass forming inorder to lower the sintering temperature to approximately 1000°C. A method for extruding rods of approximately 400 μm diameter was developed. The rods were assembled and impregnated with epoxy resin to form 1-3 composites containing approximately 20 and 50 vol% piezoceramics. Both PZT rods and the composites were studied by a scanning electron microscope (SEM). The dielectric properties of the composites were measured. The equivalent capacitance model was employed to determine the dielectric for comparison.