Review and a Research on Green NIR Reflective Pigment

Pattana Rakkwamsuk

School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi 126 Pracha Utit Rd., Bang Mot, Tung Kru, Bangkok 10140 Email: pattana.rak@kmutt.ac.th

Abstract

In hot climate regions, large amount of electricity in buildings is consumed by air-conditioning systems. Coating on a building envelope with solar reflective coating can enhance thermal performance of a building. Pigment in the coating plays a major role on its solar reflective property. This talk and presentation will give a review on a development of various NIR/IR reflective pigments. It will also report a development of green-NIR reflective pigments in which Cr_2O_3 , a green pigment oxide, was used as the host component and the mixtures of Al_2O_3 , V_2O_5 and TiO₂ were used as the guest components. Al₂O₃, V₂O₅ and TiO₂ were mixed at different 36 compositions. The mixed samples were calcined at 1150 °C for 4 hours and were ground with an agate ball mill for 7 minutes at a speed of 250 rev/min. Finally, the pigments were sieved to obtain the particle sizes of 0.5 - 2.0 µm. The reflectance for all samples were measured and computed in accordance with the ASTM E891 standard. It was found that a maximum reflectance, in the wavelength ranging between 780 and 2100 nm, of 82.8% was obtained from the sample with a composition of 80%Cr₂O₃, 14%Al₂O₃, 4%TiO₂ and 2% V₂O₅. The pigment was further investigated when it was used for a production of a ceramic tile. A ceramic glaze was prepared using the pigment at 6% wt. The water at 55.5% wt was added into the pigmented glaze to obtain the slurry with specific gravity of about 1.4. The slurry was then sprayed onto a clay biscuit that was further fired at 1100 °C. Experiments showed that the NIR reflectance of the pigmented glaze slightly dropped to 76.3%. The techniques found from this development can be further employed for other NIR/IR reflective pigments.