Synthesis and Microstructure Observation of Molten Metal Corrosion Resistant Yttria Based Refractory

<u>Tadachika NAKAYAMA</u>^{a,*}, Son Thanh Nguyen ^a, Hisayuki Suematsu ^a, Tsuneo Suzuki ^a, Makoto Nanko ^a, Hong Baek Cho ^a, Minh Triet Tan Huynh ^a and Koichi Niihara^a

"Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan *E-mail address nky15@vos.nagaokaut.ac.jp

Keywords: Y₂Ti₂O₇, Corrosion, Mechanical properties, Refractories

When the demand for finding new refractory materials which can sustain molten metal at very high temperature becomes imperative, $Y_2Ti_2O_7$, the main phase precipitated in oxide dispersion strengthened (ODS) steel, has been considered a promising candidate. In this study, ceramic discs of $Y_2Ti_2O_7$ were firstly sintered from Y_2O_3 and TiO_2 by solid-state reaction and hot-pressing method, and then densified by Hot-isostatic-pressing (HIP) before being employed to fabricate sandwiched structures with aluminum (Al) foils. The phase identification by X-ray diffraction confirmed no reaction between the molten Al and the ceramics, while the micro-structural observation and energy dispersive X-ray spectroscopy results revealed that the densification has improved the resistance of $Y_2Ti_2O_7$ ceramics against molten-metal penetration. The result of this study should be good reference data for designing for crucible, casting molds.