Advanced rare earth oxide doping ZrO2 based ceramic materials sintering behavior at lower temperature for solid oxide fuel cells

Cheng-Xin Li*

School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an city, Shaanxi Province, 710049, P.R. China *E-mail address: licx@xjtu.edu.cn

Keywords: Solid oxide fuel cells, Electrolyte, Zirconia, Rare earth oxide

Scandia-stabilized zirconia (ScSZ) is the electrolyte of choice for low- and midtemperature SOFCs because Sc^{3+} matches Zr^{4+} in size, yielding high O^{2-} conductivity and a cubic fluorite structure. Yet between 500-650 °C the cubic phase transforms to the rhombohedral phase, causing abrupt conductivity loss and long-term aging. Codoping with Yb_2O_3 widens the cubic stability window and redistributes oxygen vacancies via size matching, while adding Al_2O_3 and Bi_2O_3 enables low-temperature sintering. Al_2O_3 scavenges SiO_2 grain-boundary impurities and lowers boundary resistance, achieving 97.2 % density at 1350 °C; Bi_2O_3 forms a transient liquid phase that reduces shrinkage onset by ~ 200 °C and yields 97.1 % density. This "rare-earth + sintering-aid" synergy suppresses grain growth, cuts energy use, and retains 0.12 S cm⁻¹ at 750 °C in 1Yb10ScSZ-0.3Al without forming low-conductivity second phases.