Flexible Thermoelectric Paper and its thermoelectric generator from Bacterial Cellulose/Ag2Se Nanocomposites

<u>Supree Pinitsoontorn</u>^{a,*}, Dulyawich Palaporn^a, Wiyada Mongkolthanaruk^b, Kajornsak Faungnawakij^c, Sora-at Tanusilp^d, Ken Kurosaki^d

^aInstitute of Nanomaterials Research and Innovation for Energy (IN-RIE), Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand. ^bDepartment of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

^c National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand.

^d Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan.

*E-mail address corresponding author: psupree@kku.ac.th

Keywords: flexible thermoelectric; Ag₂Se; bacterial cellulose; nanocomposite;

Abstract

In this research, a flexible thermoelectric paper was fabricated from bacterial cellulose/silver selenide (BC/Ag₂Se) nanocomposites. Ag₂Se particles were in situ synthesized in the network of BC nanofibers. Several synthesis parameters that crucially affect the formation of Ag₂Se particles in the BC structure were investigated to understand the phase formation mechanism. Under the optimized conditions, the BC/Ag₂Se paper with a large proportion of Ag₂Se up to 75 wt.% was successfully obtained. The *in situ* synthesis limits the Ag₂Se formation within the nanopores of the BC structure. As a result, the sub-micro size Ag₂Se particles with narrow size distribution were homogeneously dispersed in the BC nanofiber network. The microstructure was further improved by hot-pressing, which increase the density of the BC/Ag₂Se paper and make the BC layered structure more compacted. These contributed to a significant enhancement of the thermoelectric properties, with the electrical conductivity of 23000 S/m and the Seebeck coefficient of -167 μ V/K at 400 K. The power factor was 642 μ W/mK² at 400 K, a very high value compared to other flexible thermoelectric research. The measurement of thermal conductivity yielded the κ value of 0.36 W/mK at 400 K, which led to the maximum ZT of 0.70 at 400 K. To demonstrate the thermoelectric conversion, five BC/Ag2Se paper pieces were connected in series to construct a thermoelectric module. The module is very flexible and can be curved to attach to any arbitrary shape of the hot/cold surfaces. In addition, the process for fabricating the BC/Ag₂Se paper is scalable without any use of advanced or expensive instruments. This makes it a very attractive choice as a flexible TEG.