

Corrosion behaviour of stainless steel in molten nitrate salt

Piyorose Promdirek^{a,*}

P. Kettrakul^a, N. Kanjanaprayut^{a, b}, P. Treewiriyakitja^{a, b}, S. Joy-A-Ka^c, T. Siripongsakul^a

^aHigh-Temperature Corrosion Research Centre, Department of Materials and Production Technology Engineering, KMUTNB ^bCorrosion department, TFII, KMUTNB

^cMaterial Properties and Failure Analysis Laboratory, Material Properties Analysis and Development Centre, Thailand Institute of Scientific and Technological research, Pathumthani, Thailand *E-mail : piyorose.p@eng.kmutnb.ac.th

1. Introduction

- 2. Research methodology
- 3. Results and discussion
- 4. Conclusion
- 5. Prospective

1.Introduction

K. Vignarooban, X. Xu, A. Arvay, K. Hsu, A.M. Kannan, Applied Energy 146 (2015), 383-396.

- Concentrating solar power (CSP) is currently being a new candidate for providing the majority of the renewable energy in Thailand.
- CSP focuses the solar energy and uses the resulting heat to create steam which drives a turbine generator

Heat transfer fluid

The characteristics of a heat transfer fluid includes:

- low melting point,
- high boiling point and thermal stability,
- low vapor pressure at high temperature,
- low corrosion,
- low viscosity,
- high thermal conductivity,
- high heat capacity for energy storage, and
- low cost.

The molten salts make excellent HTFs mainly due to their thermal stability at high temperatures (generally > 500 °C).

Name	Compositions (wt.%)	Melting	Stability limit (°C)	Viscosity (Pa s)	Thermal conductivity (W m ⁻¹ K ⁻¹)	Heat capacity (kJ kg ⁻¹ K ⁻¹)	Cost (\$/kg)	Corrosion		
		point (°C)						Rate (µm/year unless specified)	Alloy	Temperature (°C)
Molten-salts Solar Salt	NaNO ₃ (60)-KNO ₃ (40)	220*	600°	0.00326 (at 300 °C)ª	0.55 (at 400 °C)	1.1 (at 60	0 °C) ^c	0.5 ^b 5	A36	316
Solar salt (NaNO ₂ – KNO ₂) was first used in this research.								304 316 321 347	570 600/680 600/680 600/680	
	3							47 19.8/6 88 21.7/5	Ha230 In625	600/680

Solar energy in Thailand

North-east zone is very interesting to be used for CSP

16-22 MJ/m²-day E_{max} in Feb - May

J. Serm, Solar radiation, Silpakorn University, 2014

The 1st experiment was tested in Udonthani province (North-East of Thailand) in order to produce hot water in food industry (Chili sauce).

Solar salt (60% wt NaNO₃+40% wt KNO₃) (Industrial grade impurity 5%)

Problem

- Due to the expensive materials (Ni-base superalloys), ferritic stainless steels such as AISI430 was used instead of Inconel625.
- However, the AISI430 was aggressively corroded in molten nitrate salt at high temperature with reaction as follows:

Prevention

Slurry aluminize coating are improved the corrosion resistance of the base material via the formation of aluminium oxide layer(Al₂O₃) and diffusion layer (iron aluminize)

oxide layer	The AI particle are oxidised to hollow alumina spheres
diffusion layer	Aluminium diffuse to the sub- state via formation Fe-Al to increase corrosion resistance

- Due to eutectic point of Al-Si phase diagram, 12%Si was added in the Al powder.
- Adding Si may lead to continuous diffusion layer and improve crack resistance.
- In this research, Al and Al-12%Si slurry coating will be studied.

Objective

Corrosion behaviour of SS430 coated by Al and Al-12%Si slurry was studied with:

- Corrosion kinetics with immersion test in molten nitrate salt for 1, 25, 50, 100 h at 600°C
- Electrochemical test in molten nitrate salt at 600°C
- Surface characterization with SEM equipped EDS and XRD

Research methodology

1. Sample preparation

Research methodology

- 2. Physico-chemical characterization
 - 1. Corrosion kinetics:
 - All samples were immersed in molten nitrate salt (60% wt NaNO₃+40% wt KNO₃) for 1, 25, 50, and 100 h at 600°C.
 - After test, samples were cleaned.
 - The weight change were investigated with microbalance (1 μ g)
 - 2. Electrochemical test for 1h in 600°C molten nitrate salt

3. Surface characterization: OM, SEM equipped EDS and XRD

Result and discussion

After coating with slurry

OM

XRD results

Diffusion layer ~100 μ m.

Al slurry coating

SEM and EDS results

The diffusion layer shows 2 zones with different Fe- Al intermatallic compound **Al-Si slurry coating**

The diffusion layer also shows different Fe- Al intermetallic compound zone with precipitate of Si-Cr

Corrosion kinetics after testing in molten salt

- The weight gain of uncoated sample was higher than that of coated samples.
- There was no different weight change for coated samples.
- Weight loss occurred due to the spallation of oxide scale.
- The rate of weight loss (oxide spallation) and weight gain (oxide formation) may be almost identical for coated samples.

un-coated

Al-Si coated

Al coated

t=100h

Electrochemical results

- Uncoated sample showed the highest corrosion current density .
- The sample coated with Al-12%Si showed the lower current density than that of samples coated with pure Al.

Uncoated samples after testing in molten salt for 100h at 600°C SEM result

 Fe_2O_3 was the major oxide scale. There was no Cr_2O_3 detected apparently

OM results

Al slurry coated

A lot of crack and porosity in diffusion layer were apparently observed in the Al coated samples.

Cracks may lead to the pitting corrosion.

Al-Si slurry coated

Compared with the Al slurry coated samples, there were cracks less than in the Al slurry coated samples.

Precipitation of Si-Cr may reduce crack, showing higher corrosion resistance.

Al coated samples after testing in molten salt for 100h at 600°C

SEM result

XRD result

In no crack zone, there was no significant difference compared with samples before immersion test except for the loss of Al_2O_3 layer. Some crack occurred in the diffusion layer.

Al-Si coated samples after testing in molten salt for 100h at 600°C SEM result

 Fe_2Al_5 was formed in the diffusion layer.

Before corrosion test

Al coating

After corrosion test

Conclusion

- 1. The corrosion resistance of the samples with slurry aluminizing coating were apparently higher than that of uncoated samples in the molten nitrate salt.
- 2. The weight change of coated samples are almost identical due to the same rate of spallation and formation of oxide.
- 3. However, the corrosion current of Al-Si coating samples was lower than that of Al coating samples, resulting to the increasing of corrosion resistance in molten salt.
- 4. Fe_2O_3 was a major oxide scale of uncoated samples after immersion testing.
- 5. The intermetallic compounds of Fe and Al, possible FeAl and Fe₃Al, were found in the diffusion zone. In addition Fe_2Al_5 was found in Al-Si coating samples after immersion testing.
- 6. The Si-Cr precipitation in Al-Si coating samples led to crack resistance, showing less pitting corrosion.

Prospective

HTF

The local salt in Thailand may be used as HTF, the protection from molten salt corrosion should be intensively studied. (Addition of NaCl)

Solar salt (60% wt NaNO₃+40% wt KNO₃+5% NaCl) \Rightarrow P. Kettrakul

Materials

Several types of stainless steel were used instead of 430 for this application (In progress)

Slurry coating

- 1. The new procedure of slurry coating should be investigated in order to reduce crack in the diffusion zone and also for tube coating.
- 2. The effect of other elements in slurry coating should be studied.

References

- Mitsumata, Tetsu, Tomohiro Hachiya, and Koji Nitta. "Nonlinear viscoelasticity, percolation and particles dispersibility of PVA/aluminum hydroxide composite gels." *European Polymer Journal* 44.8 (2008): 2574-2580.
- Juez-Lorenzo, Maria, et al. "Diffusion aluminide coatings using spherical micro-sized aluminium particles." *Defect and Diffusion Forum*. Vol. 289. Trans Tech Publications, 2009.
- Kolarik, Vladislav, et al. "Multifunction high temperature coating system based on aluminium particle technology." *Materials Science Forum*. Vol. 595. Trans Tech Publications, 2008.
- Montero, X., M. C. Galetz, and M. Schütze. "Slurry coated Ni-plated Fe-base alloys: Investigation of the influence of powder and substrate composition on interdiffusional and structural degradation of aluminides." *Surface and Coatings Technology*236 (2013): 465-475.
- Bauer, Johannes Thomas, et al. "Innovative slurry coating concepts for aluminizing of an austenitic steel in chlorine and sulfur containing atmosphere." *Surface and Coatings Technology* 285 (2016): 179-186.
- Vignarooban, K., et al. "Heat transfer fluids for concentrating solar power systems-a review." *Applied Energy* 146 (2015): 383-396.
- Muraleedharan, M., et al. "Directly absorbing Therminol-Al 2 O 3 nano heat transfer fluid for linear solar concentrating collectors." *Solar Energy* 137 (2016): 134-142.
- Dorcheh, A. Soleimani, and M. C. Galetz. "Slurry aluminizing: A solution for molten nitrate salt corrosion in concentrated solar power plants." *Solar Energy Materials and Solar Cells*146 (2016): 8-15.
- Zhang, Jie, et al. "Effect of temperature on microstructure and formability of Al-10 mass% Si coatings." *Journal of Iron and Steel Research, International* 23.3 (2016): 270-275.
- Blanco, M. J., and S. Miller. "Introduction to concentrating solar thermal (CST) technologies." *Advances in Concentrating Solar Thermal Research and Technology*. 2017. 3-25.

Thank you for your attention

FACULTY of ENGINEERING K M U T N B

Moving forward book